Biomaterial Testing Methodology for Long-Term in vivo Applications: Silicon Carbide Corrosion Resistance, Biocompatibility and Hemocompatibility

نویسنده

  • Maysam Nezafati
چکیده

DEDICATION To Behnaz H. Zaribaf, who has supported me unconditionally and never gave up on me.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces

Implantable microelectrode arrays (MEAs) offer clinical promise for prosthetic devices by enabling restoration of communication and control of artificial limbs. While proof-of-concept recordings from MEAs have been promising, work in animal models demonstrates that the obtained signals degrade over time. Both material robustness and tissue response are acknowledged to have a role in device life...

متن کامل

Comparison of Various Properties between Titanium-Tantalum Alloy and Pure Titanium for Biomedical Applications

The mechanical properties, corrosion resistance and biocompatibility of the titanium-tantalum alloys together with pure titanium are comparatively studied for biomedical applications in this study. The experimental results confirm the previous theoretic investigation that tantalum has a potential to enhance the strength and reduce the elastic modulus of titanium alloys at the same time, and ind...

متن کامل

Biomedical Applications of Titanium and its Alloys

Materials used for biomedical applications cover a wide spectrum and must exhibit specific properties. The most important property of materials used for fabricating implants is biocompatibility, followed by corrosion resistance. The main metallic biomaterials are stainless steels, cobalt alloy, and titanium and titanium alloys. Stainless steel was the first metallic biomaterial used successfull...

متن کامل

Bioengineering cobalt chromium cardiovascular stent biomaterial for surface enhancement and characterization

A principal requirement for biomedical alloys in device implantation is in vivo corrosion resistance, and optimal compatibility at the implant interface. In the context of materials science, biocompatibility is the ability of a material to assist a specific biological application and elicit an appropriate response, simulated in vitro or translated in vivo. The in vivo response of a device is de...

متن کامل

In vitro corrosion and biocompatibility of binary magnesium alloys.

As bioabsorbable materials, magnesium alloys are expected to be totally degraded in the body and their biocorrosion products not deleterious to the surrounding tissues. It's critical that the alloying elements are carefully selected in consideration of their cytotoxicity and hemocompatibility. In the present study, nine alloying elements Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr were added into magn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015